Phenoscience Laboratories conducts a research program on the foundations of quantum mechanics. The current focus is emerging concepts such as nonlocal information, effective non-signalling, experimenter free will, quantum complexity, and quantum causality, as applied in the search of a possible ontology for quantum mechanics. Phenoscience Laboratories is a regular co-organizer of the Emergent Quantum Mechanics (EmQM) symposium series since 2013 (EmQM17). For the contributions of Phenoscience Laboratories to the EmQM symposium series see also EDITED VOLUMES and VIDEO MEDIA. This program is sponsored in large part by the Fetzer Franklin Fund (FFF) of the John E. Fetzer Memorial Trust.


The EmQM17David Bohm Centennial Symposium at the University of London, October 26-28, 2017 (EmQM17), was co-organized by Phenoscience Laboratories. „Towards Ontology of Quantum Mechanics and the Conscious Agent“ was the title of the 2017 edition of the EmQM symposium series. Click here for the speakers and the scientific program. Videos of all speaker presentations are also available on the EmQM17 website.

Visit #EmQM17 for photos and live commentary during the symposium concerning selected speaker contributions.


Jan Walleczek is an Executive Producer and Science Consultant for the film INFINITE POTENTIAL – The Life & Ideas of David Bohm by Director Paul Howard. (Click here for more information)
For an interview with Jan Walleczek click here.

Book Publication

Walleczek, J.,  Grössing, G., Pylkkänen, P. and Hiley, B. (Eds.)  (2019) Emergent Quantum Mechanics – David Bohm Centennial Perspectives. MDPI Press, Basel, Switzerland. The collection of 32 special-issue contributions is available as a free download or as a printed book (544 pages). Click here for a free download

Nonlocal Information, Quantum Causality, and Non-signalling Theorem

Walleczek, J. (2019) Agent Inaccessibility as a Fundamental Principle in Quantum Mechanics: Objective Unpredictability and Formal Uncomputability. Entropy 21, 4. Read more

Synopsis: The inaccessibility to the experimenter agent of the complete quantum state is well-known. However, decisive answers are still missing for the following question: What underpins and governs the physics of agent inaccessibility? Specifically, how does nature prevent the agent from accessing, predicting, and controlling, individual quantum measurement outcomes? The orthodox interpretation of quantum mechanics employs the metaphysical assumption of indeterminism—‘intrinsic randomness’—as an axiomatic, in-principle limit on agent–quantum access. By contrast, ontological and deterministic interpretations of quantum mechanics typically adopt an operational, in-practice limit on agent access and knowledge—‘effective ignorance’. The present work considers a third option—‘objective ignorance’: an in-principle limit for ontological quantum mechanics based upon self-referential dynamics, including undecidable dynamics and dynamical chaos, employing uncomputability as a formal limit. Given a typical quantum random sequence, no formal proof is available for the truth of quantum indeterminism, whereas a formal proof for the uncomputability of the quantum random sequence—as a fundamental limit on agent access ensuring objective unpredictability—is a plausible option. This forms the basis of the present proposal for an agent-inaccessibility principle in quantum mechanics.”

Walleczek, J. and Grössing, G. (2016a) Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication. Found. Phys. 46, 1208–1228. Read more

Synopsis:A definition of an effective non-signalling theorem is introduced that can cope with the challenge of accounting for EPR-type nonlocal correlations in ontological or emergent quantum mechanics. In defining the role of the experimenter agent, a distinction between type-1 and type-2 processes is drawn, whereby only the type-1 process entails a degree of (free-willed) agent control in selecting measurement settings. It is found that the presence of type-1 processes (e.g., Shannon signalling) is necessary for the communication of a message between two agents; however, the presence of type-2 processes (e.g., non-Shannon signalling) is entirely sufficient for (random) information transfers between any two locations in nature in the absence of meaningful communication. It is highly problematic that the orthodox view of quantum mechanics still ignores the essential differences between type-1 and type-2 processes in interpreting the non-signalling theorem. This neglect frequently leads to false conclusions regarding the (im)possibility of ontological quantum mechanics, such as of de Broglie-Bohm theory.

Walleczek, J. (2016) The Super-indeterminism in Orthodox Quantum Mechanics Does Not Implicate the Reality of Experimenter Free Will. J. Phys.: Conf. Ser. 701, 012005. Read more

Synopsis: The concept of ‘super-indeterminism’ is introduced for experimenter agents performing quantum experiments. Super-indeterminism is shown to underlie the Conway-Kochen free-will theorem. Unlike Conway and Kochen, it is argued that John S. Bell (of Bell’s nonlocality theorem), instead favored an effective free will theorem, i.e., one that is fully compatible with the rule of determinism and causality in nature. Finally, the article argues that Bell’s notion of ‘effectively free variables’ can be identified plausibly with the existence of variables in nature that are ‘universally uncomputable’, possibly as a function of self-referential system dynamics, including self-organization and deterministic chaos. Regarding the feature of ‘universal uncomputability, the article concludes that “In principle, this essential feature of deterministic chaos, holds true for physical, chemical, biological, and even psycho-physical, systems, including in neurophysiological brain states potentially associated with the free choice performance by an experimenter agent (for an overview, e.g., Walleczek [11]).”

Walleczek, J. and Grössing, J. (2016b) Is the World Local or Nonlocal? Towards an Emergent Quantum Mechanics in the 21st Century. J. Phys.: Conf. Ser. 701, 012001. Read more

Walleczek, J. and Grössing, G. (2014) The Non-signalling Theorem in Generalizations of Bell’s Theorem. J. Phys.: Conf. Ser. 504, 012001. Read